ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Стороны треугольника равны 10, 10, 12. Найдите радиусы вписанной и вневписанных окружностей. Решение |
Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 769]
Две окружности касаются внешним образом. A – точка касания их общей внешней касательной с одной из окружностей, B – точка той же окружности, диаметрально противоположная точке A. Докажите, что длина касательной, проведённой из точки B ко второй окружности, равна диаметру первой окружности.
Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что ∠ABM = ∠MQP.
Стороны треугольника равны 10, 10, 12. Найдите радиусы вписанной и вневписанных окружностей.
Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что PQ = AC/2. Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный.
Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|