ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите площадь треугольника BCK, если BC = a, CA = b.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 460]      



Задача 116317

Темы:   [ Метод координат ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD найдите такую точку E , для которой отношение площадей треугольников EAB и ECD было равно 1:2, а треугольников EAD и EBC — 3:4, если известны координаты всех его вершин: A(-2;-4) , B(-2;3) , C(4;6) , D(4;-1) .
Прислать комментарий     Решение


Задача 116489

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 7,8,9

На сторонах AC и BC треугольника ABC выбраны точки M и N соответственно так, что  MN || AB.  На стороне AC отмечена точка K так, что  CK = AM.  Отрезки AN и BK пересекаются в точке F. Докажите, что площади треугольника ABF и четырёхугольника KFNC равны.

Прислать комментарий     Решение

Задача 54234

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Отношения площадей ]
Сложность: 3
Классы: 8,9

Точки M и N расположены на стороне BC треугольника ABC, а точка K — на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника AMNK.

Прислать комментарий     Решение


Задача 54947

Темы:   [ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки разделите данный параллелограмм на четыре равновеликих части прямыми, выходящими из одной вершины.

Прислать комментарий     Решение


Задача 52820

Темы:   [ Диаметр, основные свойства ]
[ Отношение площадей подобных треугольников ]
Сложность: 3
Классы: 8,9

На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите площадь треугольника BCK, если BC = a, CA = b.

Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .