Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

  а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
  б) Решите общую задачу: при каких a и b можно разделить пополам  a + b  литров молока, пользуясь лишь сосудами в a литров, b литров и  a + b  литров?
За одно переливание из одного сосуда в другой можно вылить всё, что там есть, или долить второй сосуд до верха.

Вниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC взяты соответственно точки M и N так, что  BM = CN.
Докажите, что середина отрезка MN лежит на средней линии треугольника BC, параллельной его основанию.

ВверхВниз   Решение


Автор: Мухин Д.Г.

Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что  2MN < AB.

ВверхВниз   Решение


a, b, c – целые числа; a и b отличны от нуля.
Докажите, что уравнение  ax + by = c  имеет решения в целых числах тогда и только тогда, когда c делится на  d = НОД(a, b).

ВверхВниз   Решение


Докажите равенство  

ВверхВниз   Решение


Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

ВверхВниз   Решение


Дана равнобедренная трапеция ABCD. Известно, что  AD = 10,  BC = 2,  AB = CD = 5.  Биссектриса угла BAD пересекает продолжение основания BC
в точке K. Найдите биссектрису угла ABK в треугольнике ABK.

ВверхВниз   Решение


Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?

ВверхВниз   Решение


Сторона ромба ABCD равна 5. В этот ромб вписана окружность радиуса 2,4.
Найдите расстояние между точками, в которых эта окружность касается сторон AB и BC, если диагональ AC меньше диагонали BD.

Вверх   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 2254]      



Задача 53110

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции с острым углом α при основании окружность, построенная на боковой стороне как на диаметре, касается другой боковой стороны.
В каком отношении она делит большее основание трапеции?

Прислать комментарий     Решение

Задача 53183

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Сторона ромба ABCD равна 5. В этот ромб вписана окружность радиуса 2,4.
Найдите расстояние между точками, в которых эта окружность касается сторон AB и BC, если диагональ AC меньше диагонали BD.

Прислать комментарий     Решение

Задача 53206

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

Дана равнобедренная трапеция ABCD. Известно, что  AD = 10,  BC = 2,  AB = CD = 5.  Биссектриса угла BAD пересекает продолжение основания BC
в точке K. Найдите биссектрису угла ABK в треугольнике ABK.

Прислать комментарий     Решение

Задача 53297

Темы:   [ Ромбы. Признаки и свойства ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

Дан ромб с острым углом $ \alpha$. Какую часть площади ромба составляет площадь вписанного в него круга?

Прислать комментарий     Решение


Задача 53361

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.).
Докажите, что центры обоих параллелограммов совпадают.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 2254]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .