Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

a, b, c, d – положительные числа. Докажите, что  

Вниз   Решение


Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что  BK·AB = BO²  и
AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

ВверхВниз   Решение


Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?

ВверхВниз   Решение


Сторона ромба равна 8 см, острый угол равен 30o. Найдите радиус вписанного круга.

ВверхВниз   Решение


Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера?

ВверхВниз   Решение


В остроугольном треугольнике ABC точка O – центр описанной окружности. Точка B1 симметрична точке B относительно стороны AC. Прямые AO и B1C пересекаются в точке K. Докажите, что луч KA является биссектрисой угла BKB1.

ВверхВниз   Решение


Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.

ВверхВниз   Решение


Может ли в государстве, в котором из каждого города выходит три дороги, быть ровно 100 дорог?

ВверхВниз   Решение


Сколько существует шестизначных чисел, все цифры которых имеют одинаковую чётность?

ВверхВниз   Решение


Окружность, вписанная в треугольник ABC, касается его сторон AB, BC, AC в точках C1, A1, B1 соответственно. Пусть A – точка, симметричная A1 относительно прямой B1C1; аналогично определяется точка C. Прямые AC1 и CA1 пересекаются в точке D. Докажите, что BDAC.

ВверхВниз   Решение


От треугольника отрезали три треугольника, причём каждый из трёх разрезов коснулся вписанной в треугольник окружности. Известно, что периметры отрезанных треугольников равны P1, P2, P3. Найдите периметр исходного треугольника.

ВверхВниз   Решение


Доказать неравенство   .

ВверхВниз   Решение


В равнобедренный треугольник, у которого боковая сторона равна 100, а основание 60, вписана окружность.
Найдите расстояние между точками касания, находящимися на боковых сторонах.

ВверхВниз   Решение


Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

ВверхВниз   Решение


Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

ВверхВниз   Решение


Докажите, что точки, симметричные точке пересечения высот треугольника ABC относительно его сторон, лежат на описанной окружности.

ВверхВниз   Решение


На окружности расположены 20 точек. Эти 20 точек попарно соединяются 10 хордами, не имеющими общих концов и непересекающихся.
Сколькими способами это можно сделать?

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 789]      



Задача 52632

Темы:   [ Вписанные и описанные окружности ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Сторона ромба равна 8 см, острый угол равен 30o. Найдите радиус вписанного круга.

Прислать комментарий     Решение


Задача 53562

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Угол между касательной и хордой ]
Сложность: 3-
Классы: 8,9

Стороны треугольника ABC касаются вписанной окружности в точках K, P и M, причём точка M расположена на стороне BC. Найдите угол KMP, если  ∠A = 2α.

Прислать комментарий     Решение

Задача 53304

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3-
Классы: 8,9

Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

Прислать комментарий     Решение


Задача 116375

Темы:   [ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Свойства биссектрис, конкуррентность ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что  AQ = AC,  BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116556

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3-
Классы: 9,10

На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 789]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .