ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Середины E и F параллельных сторон BC и AD параллелограмма ABCD соединены с вершинами D и B соответственно.
Докажите, что прямые BF и ED делят диагональ AC на три равные части.

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 5264]      



Задача 53330

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Треугольники ABC и BAD равны, причём точки C и D лежат по разные стороны от прямой AB. Докажите, что:
  а) треугольники CBD и DAC равны;
  б) прямая CD делит отрезок AB пополам.

Прислать комментарий     Решение

Задача 53337

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Докажите равенство треугольников по углу, биссектрисе и стороне, исходящим из вершины этого угла.

Прислать комментарий     Решение

Задача 53380

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Ломаные ]
Сложность: 3
Классы: 7,8,9

Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.

Прислать комментарий     Решение

Задача 53413

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника AB1C1 пересекаются в точке N.
Докажите, что точки A, M и N лежат на одной прямой.

Прислать комментарий     Решение

Задача 53472

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Середины E и F параллельных сторон BC и AD параллелограмма ABCD соединены с вершинами D и B соответственно.
Докажите, что прямые BF и ED делят диагональ AC на три равные части.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 5264]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .