ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10? В таблице размерами m×n расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто k наибольших чисел (k ≤ m), в каждой строке – l наибольших чисел (l ≤ n). Докажите, что по крайней мере kl чисел подчёркнуты дважды. Докажите, что биссектриса равнобедренного треугольника, проведённая из вершины, является медианой и высотой. При каком n > 1 может случиться так, что в компании из n + 1 девочек и n мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек? В параллелограмм вписан ромб так, что его стороны параллельны диагоналям параллелограмма. |
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 2254]
В окружность вписан четырёхугольник ABCD, диагонали которого
пересекаются в точке M. Известно, что AB = a, CD = b, ∠AMB = α.
Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
На диагоналях AC и BD трапеции ABCD взяты соответственно
точки M и N так, что AM : MC = DN : NB = 1 : 4.
В параллелограмм вписан ромб так, что его стороны параллельны диагоналям параллелограмма.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 2254]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке