ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Около треугольника ABC описана окружность. Продолжение биссектрисы CK треугольника ABC пересекает эту окружность в точке L, причём CL – диаметр данной окружности. Найдите отношение отрезков BL и AC, если sin∠A = ¼. Сколько существует таких пар натуральных чисел (m, n), каждое из которых не превышает 1000, что
Даны прямая и на ней точки A и B. Найдите геометрическое место точек касания окружностей, одна из которых касается данной прямой в точке A, другая — в точке B.
Прямоугольный параллелепипед размером m×n×k разбит на единичные кубики. Сколько всего образовалось параллелепипедов (включая исходный)? 100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом? Сколько сторон может иметь выпуклый многоугольник,
все диагонали которого имеют одинаковую длину?
Площадь треугольника ABC равна 2 |
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 831]
В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные точке O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны, а прямые AA1, BB1 и CC1 пересекаются в одной точке.
На сторонах AD и DC ромба ABCD построены правильные треугольники AKD и DMC, причём точка K лежит по ту же сторону от AD, что и прямая BC, а точка M – по другую сторону от DC, чем AB. Докажите, что точки B, K и M лежат на одной прямой.
Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если ∠BDE : ∠EDC = ∠BED : ∠DEA, то треугольник ABC — равнобедренный.
Площадь треугольника ABC равна 2
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 831]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке