ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из точки M, лежащей вне двух концентрических окружностей, проведены четыре прямые, касающиеся окружностей в точках A, B, C и D. Докажите, что точки M, A, B, C, D расположены на одной окружности. Решение |
Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 769]
В равнобедренном треугольнике основание равно 48, а боковая сторона равна 30. Найдите радиусы описанной и вписанной окружностей и расстояние между их центрами.
Из точки M, лежащей вне двух концентрических окружностей, проведены четыре прямые, касающиеся окружностей в точках A, B, C и D. Докажите, что точки M, A, B, C, D расположены на одной окружности.
Окружности радиусов 8 и 3 касаются внутренним образом. Из центра большей окружности проведена касательная к меньшей окружности. Найдите длину этой касательной.
Около остроугольного треугольника ABC описана окружность. Касательные к окружности, проведённые в точках A и C, пересекают касательную, проведённую в точке B, соответственно в точках M и N. В треугольнике ABC проведена высота BP. Докажите, что BP – биссектриса угла MPN.
Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|