Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно.

Вниз   Решение


В прямоугольном треугольнике ABC (угол C прямой) BC=2AC, CH – высота, O1 и O2 – центры окружностей, вписанных соответственно в треугольники ACH и BCH, а O – центр окружности, вписанной в треугольник ABC. Пусть H1, H2 и H0 – проекции точек O1, O2 и O на гипотенузу. Докажите, что H1H=HH0=H0H2.

ВверхВниз   Решение


Дано несколько выпуклых многоугольников, причем нельзя провести прямую так, чтобы она не пересекала ни одного многоугольника и по обе стороны от нее лежал хотя бы один многоугольник. Докажите, что эти многоугольники можно заключить в многоугольник, периметр которого не превосходит суммы их периметров.

ВверхВниз   Решение


Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее.

ВверхВниз   Решение


На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

ВверхВниз   Решение


Какое наименьшее натуральное число не является делителем 50!?

ВверхВниз   Решение


В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?

ВверхВниз   Решение


В треугольнике ABC  AB = AC,  угол A – тупой, BD – биссектриса, AM – высота, E – основание перпендикуляра, опущенного из D на сторону BC. Из точки D восставлен перпендикуляр к BD, который пересекает сторону BC в точке F. Известно, что  ME = FC = a.  Найдите площадь треугольника ABC.

Вверх   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 159]      



Задача 108511

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а BL — медианой в треугольнике BHC. Найдите угол LBC, если известно, что BL = 4 и AH = $ {\frac{9}{2\sqrt{7}}}$

Прислать комментарий     Решение


Задача 108512

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а точка L делит отрезок HC пополам. Найдите угол LBC, если известно, что AH = $ {\frac{2}{\sqrt{5}}}$, а BL = 3

Прислать комментарий     Решение


Задача 30909

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 6,7

Вокруг экватора натянули верёвку. Затем её удлинили на 1 см и опять натянули, приподняв в одном месте.
Сможет ли человек пройти в образовавшийся зазор?

Прислать комментарий     Решение

Задача 53171

Темы:   [ Прямые, касающиеся окружностей ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Около окружности радиуса R описана трапеция ABCD, меньшее основание BC которой равно a. Пусть E — точка касания окружности со стороной AB и BE = b. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54454

Темы:   [ Вспомогательные подобные треугольники ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC  AB = AC,  угол A – тупой, BD – биссектриса, AM – высота, E – основание перпендикуляра, опущенного из D на сторону BC. Из точки D восставлен перпендикуляр к BD, который пересекает сторону BC в точке F. Известно, что  ME = FC = a.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .