ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD биссектриса угла ABC пересекает сторону AD в точке M, а перпендикуляр, опущенный из вершины A на сторону BC, пересекает BC в точке N, причём BN = NC и AM = 2MD. Найдите стороны и площадь четырёхугольника ABCD, если его периметр равен 5 + $ \sqrt{3}$, а угол BAD равен 90o и угол ABC равен 60o.

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 1396]      



Задача 54477

Темы:   [ Площадь трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD биссектриса угла ABC пересекает сторону AD в точке M, а перпендикуляр, опущенный из вершины A на сторону BC, пересекает BC в точке N, причём BN = NC и AM = 2MD. Найдите стороны и площадь четырёхугольника ABCD, если его периметр равен 5 + $ \sqrt{3}$, а угол BAD равен 90o и угол ABC равен 60o.

Прислать комментарий     Решение


Задача 54495

Темы:   [ Площадь параллелограмма ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD большая сторона AD равна 5. Биссектрисы углов A и B пересекаются в точке M. Найдите площадь параллелограмма, если BM = 2, а cos$ \angle$BAM = $ {\frac{4}{5}}$.

Прислать комментарий     Решение


Задача 54731

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Найдите площадь треугольника ABC, если известно, что AB = a, $ \angle$A = $ \alpha$, $ \angle$B = $ \beta$.

Прислать комментарий     Решение


Задача 54991

Темы:   [ Перегруппировка площадей ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Пусть M, N, K и L — середины сторон CD, DA, AB и BC квадрата ABCD, площадь которого равна S. Найдите площадь четырёхугольника, образованного прямыми AM, BN, CK и DL.

Прислать комментарий     Решение


Задача 55002

Тема:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена прямая DE, параллельная основанию AC. Площадь треугольника ABC равна 8, а площадь треугольника DEC равна 2. Найдите отношение отрезка DE к основанию треугольника ABC.

Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .