ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Параллелограммы
>>
Частные случаи
>>
Ромбы. Признаки и свойства
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°. Решение |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 173]
В трапеции ABCD меньшее основание BC равно 3, боковые стороны AB и CD равны по 3. Диагонали трапеции образуют между собой угол в 60o. Найдите основание AD.
Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°.
На сторонах AB и CD прямоугольника ABCD отметили точки E и F, так что AFCE – ромб. Известно, что АВ = 16, ВС = 12. Найдите EF.
В четырёхугольнике ABCD стороны AD и BC параллельны.
На диагонали $AC$ ромба $ABCD$ построен параллелограмм $APQC$ так, что точка $B$ лежит внутри него, а сторона $AP$ равна стороне ромба.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 173] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|