ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан отрезок AB. Найдите на плоскости множество таких точек C, что медиана треугольника ABC, проведённая из вершины A, равна высоте, проведённой из вершины B.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 96]      



Задача 107834

Темы:   [ Четырехугольники (экстремальные свойства) ]
[ Перенос помогает решить задачу ]
[ Параллелограмм Вариньона ]
[ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8,9,10

Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.
Прислать комментарий     Решение


Задача 54638

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Перенос помогает решить задачу ]
[ Удвоение медианы ]
Сложность: 4+
Классы: 8,9,10

Дан отрезок AB. Найдите на плоскости множество таких точек C, что медиана треугольника ABC, проведённая из вершины A, равна высоте, проведённой из вершины B.

Прислать комментарий     Решение


Задача 110754

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Центральная симметрия помогает решить задачу ]
[ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 9,10

Даны две окружности, пересекающиеся в точках P и Q . C – произвольная точка одной из окружностей, отличная от P и Q ; A , B – вторые точки пересечения прямых CP , CQ с другой окружностью. Найдите геометрическое место центров окружностей, описанных около треугольников ABC .
Прислать комментарий     Решение


Задача 55523

Темы:   [ Ортоцентр и ортотреугольник ]
[ Перенос помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5-
Классы: 8,9,10

Из вершины B параллелограмма ABCD проведены его высоты BK и BH. Известны отрезки KH = a и BD = b. Найдите расстояние от точки B до точки пересечения высот треугольника BKH.

Прислать комментарий     Решение


Задача 55699

Темы:   [ Перенос помогает решить задачу ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Радикальная ось ]
Сложность: 5
Классы: 8,9

С помощью циркуля и линейки проведите через данную точку прямую, на которой две данные окружности высекали бы равные хорды.

Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .