ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности заданы две точки A и B. Проводятся всевозможные пары окружностей, касающихся внешним образом друг друга и касающихся внешним образом данной окружности в точках A и B. Какое множество образуют точки взаимного касания этих пар окружностей?

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 83]      



Задача 108220

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Окружность, вписанная в угол с вершиной O касается его сторон в точках A и B , K – произвольная точка на меньшей из двух дуг AB этой окружности. На прямой OB взята точка L такая, что прямые OA и KL параллельны. Пусть M – точка пересечения окружности , описанной около треугольника KLB , с прямой AK , отличная от K . Докажите, что прямая OM касается окружности .
Прислать комментарий     Решение


Задача 54640

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Касающиеся окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 8,9

На окружности заданы две точки A и B. Проводятся всевозможные пары окружностей, касающихся внешним образом друг друга и касающихся внешним образом данной окружности в точках A и B. Какое множество образуют точки взаимного касания этих пар окружностей?

Прислать комментарий     Решение


Задача 55536

Темы:   [ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.

Прислать комментарий     Решение


Задача 52492

Темы:   [ Вспомогательная окружность ]
[ Углы между биссектрисами ]
[ Вписанные и описанные окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике ABC угол A равен 60°. Докажите, что биссектриса одного из углов, образованных высотами, проведёнными из вершин B и C, проходит через центр описанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 64918

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 9,10,11

Автор: Ивлев Ф.

Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .