|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме. Докажите, что числа Каталана удовлетворяют рекуррентному соотношению
Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0. Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей. Найдите наименьшее натуральное значение n, при котором число n! делится на 990. Докажите, что число, имеющее нечётное число делителей, является точным квадратом. Муха летает внутри правильного тетраэдра с ребром a. Какое наименьшее расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в исходную точку? Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O. |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 330]
Точки K и M расположены на сторонах AB и BC треугольника ABC, причём BK : KA = 1 : 4, BM : MC = 3 : 2. Прямые MK и AC пересекаются
в точке N.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.
В треугольнике ABC проведены медиана BK, биссектриса BE и
высота AD.
Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.
Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 330] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|