ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.

Вниз   Решение


Докажите, что числа Каталана удовлетворяют рекуррентному соотношению   Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0.
Определение чисел Каталана Cn смотри в справочнике.

ВверхВниз   Решение


Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее натуральное значение n, при котором число n! делится на 990.

ВверхВниз   Решение


Докажите, что число, имеющее нечётное число делителей, является точным квадратом.

ВверхВниз   Решение


Муха летает внутри правильного тетраэдра с ребром a. Какое наименьшее расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в исходную точку?

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Найдите стороны четырёхугольника с вершинами в точках пересечения медиан треугольников AOB, BOC, COD и AOD.

Вверх   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 330]      



Задача 53767

Темы:   [ Две пары подобных треугольников ]
[ Теоремы Чевы и Менелая ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Точки K и M расположены на сторонах AB и BC треугольника ABC, причём  BK : KA = 1 : 4,  BM : MC = 3 : 2.  Прямые MK и AC пересекаются в точке N.
Найдите отношение  AC : CN.

Прислать комментарий     Решение

Задача 53774

Темы:   [ Трапеции (прочее) ]
[ Четырехугольники (построения) ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.

Прислать комментарий     Решение

Задача 53833

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены медиана BK, биссектриса BE и высота AD.
Найдите сторону AC, если известно, что прямые BK и BE делят отрезок AD на три равные части и  AB = 4.

Прислать комментарий     Решение

Задача 54165

 [Теорема о средней линии трапеции]
Темы:   [ Средняя линия трапеции ]
[ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.

Прислать комментарий     Решение

Задача 54664

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки подобия ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Найдите стороны четырёхугольника с вершинами в точках пересечения медиан треугольников AOB, BOC, COD и AOD.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .