ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
С помощью циркуля и линейки постройте отрезок, равный и параллельный данному, так, чтобы его концы лежали на данной прямой и на данной окружности.
Для передачи сообщений по телеграфу каждая буква русского алфавита (Е и Ё отождествлены) представляется в виде пятизначной комбинации из нулей и единиц, соответствующих двоичной записи номера данной буквы в алфавите (нумерация букв начинается с нуля). Например, буква А представляется в виде 00000, буква Б - 00001, буква Ч – 10111, буква Я – 11111. Передача пятизначной комбинации производится по кабелю, содержащему пять проводов. Каждый двоичный разряд передается по отдельному проводу. При приеме сообщения Криптоша перепутал провода, поэтому вместо переданного слова получен набор букв ЭАВЩОЩИ. Найдите переданное слово. AL – биссектриса треугольника ABC , K – точка на стороне AC , причём CK=CL . Прямая LK и биссектриса угла B пересекаются в точке P . Докажите, что AP=PL . Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых. В прямоугольном треугольнике медианы, проведённые из вершин острых углов,
равны
Пусть AA1 и BB1 — медианы треугольника ABC. Докажите,
что
AA1 + BB1 >
Докажите, что площадь трапеции равна произведению средней линии на высоту.
|
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1402]
В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BM и CN пересекаются в точке O. Найдите площадь треугольника BOC.
Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части.
Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45o. Найдите площадь трапеции.
Докажите, что площадь трапеции равна произведению средней линии на высоту.
Докажите. что если в трапеции ABCD середину M одной боковой стороны AB соединить с концами другой боковой стороны CD, то площадь полученного треугольника CMD составит половину площади трапеции.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1402]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке