ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В равнобедренной трапеции диагональ равна 8 и является биссектрисой одного из углов.
Может ли одно из оснований этой трапеции быть меньше 4, а другое равно 5?

   Решение

Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 2247]      



Задача 54795

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
[ Композиции симметрий ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции диагональ равна 8 и является биссектрисой одного из углов.
Может ли одно из оснований этой трапеции быть меньше 4, а другое равно 5?

Прислать комментарий     Решение

Задача 54910

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Диагональ равнобедренной трапеции перпендикулярна боковой стороне. Найдите острый угол и большее основание трапеции, если меньшее основание равно 3, а высота трапеции равна 2.

Прислать комментарий     Решение


Задача 54913

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Точка M – середина стороны CD параллелограмма ABCD, точка H – проекция вершины B на прямую AM.
Докажите, что треугольник CBH равнобедренный.

Прислать комментарий     Решение

Задача 54984

Темы:   [ Замечательное свойство трапеции ]
[ Отношение площадей подобных треугольников ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD равна 6. Пусть E – точка пересечения продолжений боковых сторон этой трапеции. Через точку E и точку пересечения диагоналей трапеции проведена прямая, которая пересекает меньшее основание BC в точке P, а большее основание AD – в точке Q. Точка F лежит на отрезке EC, причём  EF : FC = EP : EQ = 1 : 3.  Найдите площадь треугольника EPF.

Прислать комментарий     Решение

Задача 54985

Темы:   [ Замечательное свойство трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9

Площадь треугольника MNP равна 7. Через точку Q на стороне MN проведена прямая, параллельная стороне MP и пересекающая сторону NP в точке R. На отрезке QR взяты точки A и B. Найдите площадь треугольника NAR, если известно, что  QR : MP = QA : QB = 1 : 5  и прямая NB проходит через точку пересечения прямых MR и QP.

Прислать комментарий     Решение

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .