ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность, центр которой лежит на гипотенузе AB прямоугольного треугольника ABC, касается двух катетов AC и BC соответственно в точках E и D. |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 769]
Окружность, центр которой лежит на гипотенузе AB прямоугольного треугольника ABC, касается двух катетов AC и BC соответственно в точках E и D.
Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Даны две окружности, лежащие одна вне другой. Пусть A1 и A2 – наиболее удалённые друг от друга точки пересечения этих окружностей с их линией центров, так что A1 лежит на первой окружности, а A2 – на второй. Из точки A1 проведены два луча, касающиеся второй окружности, и построен круг K1, касающийся этих лучей и первой окружности изнутри. Из точки A2 проведены два луча, касающиеся первой окружности, и построен круг K2, касающийся этих лучей и второй окружности изнутри. Докажите, что круги K1 и K2 равны.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|