Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

Вниз   Решение


M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.

ВверхВниз   Решение


Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

ВверхВниз   Решение


В алфавите племени Мумбу-Юмбу есть лишь две буквы A и Б. Два разных слова обозначают одно и то же понятие, если одно из них может быть получено из другого с помощью следующих операций:
  1) в любом месте слова комбинацию букв АБА можно заменить на БАБ;
  2) из любого места можно выкидывать две одинаковые буквы, идущие подряд.
  а) Может ли дикарь племени сосчитать все пальцы на своей руке?
  б) А дни недели?

ВверхВниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

ВверхВниз   Решение


m и n – натуральные числа,  m < n.  Докажите, что  

ВверхВниз   Решение


Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.

ВверхВниз   Решение


Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

ВверхВниз   Решение


В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.

Вверх   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 1282]      



Задача 54328

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В окружности проведены хорды AB и BC, причём AB = $ \sqrt{3}$, BC = 3$ \sqrt{3}$, $ \angle$ABC = 60o. Найдите длину той хорды окружности, которая делит угол ABC пополам.

Прислать комментарий     Решение


Задача 54920

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.

Прислать комментарий     Решение


Задача 78207

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 4-
Классы: 8,9

M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.
Прислать комментарий     Решение


Задача 78807

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены медианы AD и BE. Углы CAD и CBE равны 30o. Доказать, что AB = BC.
Прислать комментарий     Решение


Задача 102217

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4-
Классы: 8,9

Биссектрисы внутренних углов треугольника продолжены до точек пересечения с описанной около треугольника окружностью, отличных от вершин исходного треугольника. В результате попарного соединения этих точек получился новый треугольник. Известно, что углы исходного треугольника равны 30o, 60o и 90o, а его площадь равна 2. Найдите площадь нового треугольника.
Прислать комментарий     Решение


Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .