ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c. Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?
На высоте AH треугольника ABC взята точка M. Докажите, что AB2 - AC2 = MB2 - MC2.
Все точки окружности окрашены произвольным образом в два цвета.
Середины сторон выпуклого пятиугольника последовательно соединены отрезками. Найдите периметр полученного пятиугольника, если сумма всех диагоналей данного равна a.
Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1. Можно ли вместо звёздочек вставить в выражение НОК(*, *, *) – НОК(*, *, *) = 2009 в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?
Площадь треугольника ABC равна S,
На доске записаны двузначные числа. Каждое число составное, но любые два числа взаимно просты. а) Выпуклый пятиугольник разбили непересекающимися диагоналями на три треугольника. Могут ли точки пересечения медиан этих треугольников лежать на одной прямой? б) Тот же вопрос для невыпуклого пятиугольника. Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.
В параллелограмме ABCD точка E делит пополам сторону CD,
биссектриса угла ABC пересекает в точке O отрезок AE. Найдите
площадь четырёхугольника OBCE, зная, что AD = a, DE = b,
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 184]
В прямоугольном треугольнике ABC проведена биссектриса
прямого угла CL. Из вершины A (
В параллелограмме ABCD точка E делит пополам сторону CD,
биссектриса угла ABC пересекает в точке O отрезок AE. Найдите
площадь четырёхугольника OBCE, зная, что AD = a, DE = b,
Площадь треугольника ABC равна
15
Площадь треугольника ABC равна S. Углы CAB, ABC и
ACB равны
Докажите, что если стороны вписанного четырёхугольника равны a, b, c и d, то его площадь S равна
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 184]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке