Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На полке стоит 12 книг. Сколькими способами можно выбрать из них пять книг, никакие две из которых не стоят рядом?

Вниз   Решение


Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

ВверхВниз   Решение


Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

ВверхВниз   Решение


Общество из n членов выбирает из своего состава одного представителя.
  а) Сколькими способами может произойти открытое голосование, если каждый голосует за одного человека (быть может, и за себя)?
  б) Решите ту же задачу, если голосование – тайное, то есть учитывается лишь число голосов, поданных за каждого кандидата, и не учитывается, кто за кого голосовал персонально.

ВверхВниз   Решение


Кусок сыра надо разрезать на части с соблюдением таких правил:
    вначале режем сыр на два куска, затем один из них режем на два куска, затем один из трёх кусков опять режем на два куска, и т.д.;
    после каждого разрезания части могут быть разными по весу, но отношение веса каждой части к весу любой другой должно быть строго больше заданного числа $R$.
  а) Докажите, что при  $R$ = 0,5  можно резать сыр так, что процесс никогда не остановится (после любого числа разрезаний можно будет отрезать ещё один кусок).
  б) Докажите, что если  $R$ > 0,5,  то процесс резки когда-нибудь остановится.
  в) На какое наибольшее число кусков можно разрезать сыр, если  $R$ = 0,6?

ВверхВниз   Решение


Автор: Храбров А.

Числа a, b, c и d таковы, что  a² + b² + c² + d² = 4.  Докажите, что  (2 + a)(2 + b) ≥ cd.

ВверхВниз   Решение


Постройте равнобедренный треугольник, если заданы основания его биссектрис.

ВверхВниз   Решение


В параллелограмме ABCD, где $ \angle$BAD равен 60o, AB = 2, AD = 5, биссектриса угла BAD пересекается с биссектрисой угла ABC в точке K, с биссектрисой угла CDA — в точке L, а биссектриса угла BCD пересекается с биссектрисой угла CDA в точке M, с биссектрисой угла ABC — в точке N. Найдите отношение площади четырёхугольника KLMN к площади параллелограмма ABCD.

Вверх   Решение

Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 2254]      



Задача 54990

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD боковая сторона AB равна основанию BC, угол BAD равен 60o. Диагональ BD равна 3. Площадь треугольника ACD относится к площади треугольника ABC, как 2 : 1. Найдите все стороны трапеции ABCD.

Прислать комментарий     Решение


Задача 55046

Темы:   [ Параллелограмм Вариньона ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD точка L является серединой стороны BC, точка M является серединой AD, точка N является серединой стороны AB. Найдите отношение площади треугольника LMN к площади четырёхугольника ABCD.

Прислать комментарий     Решение


Задача 55047

Темы:   [ Признаки и свойства параллелограмма ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD, где $ \angle$BAD равен 60o, AB = 2, AD = 5, биссектриса угла BAD пересекается с биссектрисой угла ABC в точке K, с биссектрисой угла CDA — в точке L, а биссектриса угла BCD пересекается с биссектрисой угла CDA в точке M, с биссектрисой угла ABC — в точке N. Найдите отношение площади четырёхугольника KLMN к площади параллелограмма ABCD.

Прислать комментарий     Решение


Задача 55129

Темы:   [ Параллелограмм Вариньона ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9

Докажите, что если два выпуклых четырёхугольника расположены так, что середины их сторон совпадают, то их площади равны.

Прислать комментарий     Решение


Задача 55288

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции даны основания a = 21, b = 9 и высота h = 8. Найдите радиус описанной окружности.

Прислать комментарий     Решение


Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 2254]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .