Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Окружность касается сторон AB и BC треугольника ABC соответственно в точках D и E. Найдите высоту треугольника ABC, опущенную из точки A, если AB = 5, AC = 2, а точки A, D, E, C лежат на одной окружности.

Вниз   Решение


Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.

ВверхВниз   Решение


Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?

ВверхВниз   Решение


Доска 2N×2N покрыта неперекрывающимися доминошками 1×2. По доске прошла хромая ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход продольным, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково

а) наибольшее;

б) наименьшее возможное число продольных ходов?

ВверхВниз   Решение


Рассмотрим все окружности, касающиеся данной прямой и данной окружности (внешним образом). В каждом случае проведём прямую через точки касания. Докажите, что все эти прямые проходят через одну и ту же точку. (Это же верно и для случая внутреннего касания окружностей.)

ВверхВниз   Решение


Постройте окружность данного радиуса, проходящую через две данные точки.

ВверхВниз   Решение


Докажите, что если диагональ какого-нибудь четырёхугольника делит другую диагональ пополам, то она делит пополам и площадь четырёхугольника.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 462]      



Задача 116290

Тема:   [ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC , площадь которого равна 50, взяты соответственно точки M и K так, что AM:MB = 1:5 , а AK:KC = 3:2 . Найдите площадь треугольника AMK .
Прислать комментарий     Решение


Задача 54952

Темы:   [ Отношение площадей подобных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Докажите, что отношение площадей подобных треугольников равно квадрату их коэффициента подобия.

Прислать комментарий     Решение


Задача 55101

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 8,9

Докажите, что если диагональ какого-нибудь четырёхугольника делит другую диагональ пополам, то она делит пополам и площадь четырёхугольника.

Прислать комментарий     Решение


Задача 55106

Темы:   [ Медиана делит площадь пополам ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Середина одной из диагоналей выпуклого четырёхугольника соединена с концами другой диагонали. Докажите, что полученная ломаная делит четырёхугольник на две равновеликие части.

Прислать комментарий     Решение


Задача 55143

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Построения с помощью вычислений ]
Сложность: 3
Классы: 8,9

Как в треугольнике ABC провести ломаную BDEFG (см. рисунок), чтобы все пять полученных треугольников имели одинаковые площади?

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .