ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Пусть
Во вписанном четырёхугольнике ABCD прямая Симсона точки A относительно
треугольника BCD перпендикулярна прямой Эйлера треугольника BCD. Докажите,
что прямая Симсона точки B относительно треугольника ACD перпендикулярна
прямой Эйлера треугольника ACD.
Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда. В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции. Целые ненулевые числа a1, a2, ..., an таковы, что равенство a) Докажите, что число n чётно. б) При каком наименьшем n такие числа существуют?
Постройте треугольник по высоте, опущенной на одну из сторон, и медианам, проведённым к двум другим сторонам.
Трёхчлен ax² + bx + c при всех целых x является точным квадратом. Доказать, что тогда ax² + bx + c = (dx + e)².
Найдите геометрическое место точек X, лежащих внутри трапеции
ABCD (
BC || AD) или на её сторонах, если известно, что
S
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 85]
Найдите геометрическое место точек X, лежащих внутри трапеции
ABCD (
BC || AD) или на её сторонах, если известно, что
S
Даны окружность S и точка M вне ее. Через точку M
проводятся всевозможные окружности S1, пересекающие окружность S; X — точка пересечения касательной в точке M к окружности S1
с продолжением общей хорды окружностей S и S1. Найдите ГМТ X.
Даны две непересекающиеся окружности. Найдите
геометрическое место точек центров окружностей, делящих
пополам данные окружности (т. е. пересекающих их в диаметрально
противоположных точках).
Внутри окружности взята точка A. Найдите геометрическое
место точек пересечения касательных к окружности, проведенных
через концы всевозможных хорд, содержащих точку A.
В треугольнике $ABC$ $I$ – центр вписанной окружности, $D$ – произвольная точка на стороне $BC$, серединный перпендикуляр к отрезку $AD$ пресекает прямые $BI$ и $CI$ в точках $F$ и $E$ соответственно. Найдите геометрическое место ортоцентров треугольников $EIF$.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 85]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке