Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

а) Пусть $ \varepsilon$ = $ {\frac{1}{2}}$ + $ {\frac{i\sqrt{3}}{2}}$. Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a + $ \varepsilon^{2}_{}$b + $ \varepsilon^{4}_{}$c = 0 или a + $ \varepsilon^{4}_{}$b + $ \varepsilon^{2}_{}$c = 0.
б) Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a2 + b2 + c2 = ab + bc + ac.

Вниз   Решение


Во вписанном четырёхугольнике ABCD прямая Симсона точки A относительно треугольника BCD перпендикулярна прямой Эйлера треугольника BCD. Докажите, что прямая Симсона точки B относительно треугольника ACD перпендикулярна прямой Эйлера треугольника ACD.

ВверхВниз   Решение


Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда.

ВверхВниз   Решение


В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции.

ВверхВниз   Решение


Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

ВверхВниз   Решение


Постройте треугольник по высоте, опущенной на одну из сторон, и медианам, проведённым к двум другим сторонам.

ВверхВниз   Решение


Трёхчлен  ax² + bx + c  при всех целых x является точным квадратом. Доказать, что тогда  ax² + bx + c = (dx + e)².

ВверхВниз   Решение


Найдите геометрическое место точек X, лежащих внутри трапеции ABCD ( BC || AD) или на её сторонах, если известно, что S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 85]      



Задача 55140

Темы:   [ ГМТ - прямая или отрезок ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место точек X, лежащих внутри трапеции ABCD ( BC || AD) или на её сторонах, если известно, что S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD.

Прислать комментарий     Решение


Задача 57135

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 8,9

Даны окружность S и точка M вне ее. Через точку M проводятся всевозможные окружности S1, пересекающие окружность SX — точка пересечения касательной в точке M к окружности S1 с продолжением общей хорды окружностей S и S1. Найдите ГМТ X.
Прислать комментарий     Решение


Задача 57136

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 8,9

Даны две непересекающиеся окружности. Найдите геометрическое место точек центров окружностей, делящих пополам данные окружности (т. е. пересекающих их в диаметрально противоположных точках).
Прислать комментарий     Решение


Задача 57137

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 8,9

Внутри окружности взята точка A. Найдите геометрическое место точек пересечения касательных к окружности, проведенных через концы всевозможных хорд, содержащих точку A.
Прислать комментарий     Решение


Задача 66673

Темы:   [ ГМТ - прямая или отрезок ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9

В треугольнике $ABC$ $I$ – центр вписанной окружности, $D$ – произвольная точка на стороне $BC$, серединный перпендикуляр к отрезку $AD$ пресекает прямые $BI$ и $CI$ в точках $F$ и $E$ соответственно. Найдите геометрическое место ортоцентров треугольников $EIF$.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .