ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В пространстве имеются четыре различные прямые, окрашенные в два цвета: две красные и две синие, причём любая красная прямая перпендикулярна любой синей прямой. Докажите, что либо красные, либо синие прямые параллельны. Существует ли правильный треугольник с вершинами в узлах целочисленной
решетки?
Двое играют в двойные шахматы: все фигуры ходят как обычно, но каждый делает по два шахматных хода подряд. Докажите, что первый может как минимум сделать ничью.
Окружности с центрами O1 и O2 имеют общую хорду AB,
В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что В пробирке находятся марсианские амебы трех типов:A, B и C. Две амебы любых двух разных типов могут слиться в одну амебу третьего типа. После нескольких таких слияний в пробирке оказалась одна амеба. Каков ее тип, если исходно амеб типа A было 20 штук, типа B - 21 штука и типа C - 22 штуки?
Докажите,что площадь любого четырёхугольника ABCD не
превосходит
|
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]
Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.
Пусть a, b, c — стороны произвольного треугольника. Докажите, что a2 + b2 + c2 < 2(ab + bc + ac)
Пусть h1 и h2 — высоты треугольника, r — радиус
вписанной окружности. Докажите, что
Проведите через вершину A остроугольного треугольника ABC прямую так, чтобы она не пересекала сторону BC и чтобы сумма расстояний до неё от вершин B и C была наибольшей.
Докажите,что площадь любого четырёхугольника ABCD не
превосходит
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке