ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
С помощью циркуля и линейки постройте отрезок, равный и параллельный данному, так, чтобы его концы лежали на данной прямой и на данной окружности.
Для передачи сообщений по телеграфу каждая буква русского алфавита (Е и Ё отождествлены) представляется в виде пятизначной комбинации из нулей и единиц, соответствующих двоичной записи номера данной буквы в алфавите (нумерация букв начинается с нуля). Например, буква А представляется в виде 00000, буква Б - 00001, буква Ч – 10111, буква Я – 11111. Передача пятизначной комбинации производится по кабелю, содержащему пять проводов. Каждый двоичный разряд передается по отдельному проводу. При приеме сообщения Криптоша перепутал провода, поэтому вместо переданного слова получен набор букв ЭАВЩОЩИ. Найдите переданное слово. AL – биссектриса треугольника ABC , K – точка на стороне AC , причём CK=CL . Прямая LK и биссектриса угла B пересекаются в точке P . Докажите, что AP=PL . Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых. В прямоугольном треугольнике медианы, проведённые из вершин острых углов,
равны
Пусть AA1 и BB1 — медианы треугольника ABC. Докажите,
что
AA1 + BB1 >
|
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 289]
В равнобедренном треугольнике ABC на основании BC взята точка D, а на боковой стороне AB – точки E и M так, что AM = ME и отрезок DM параллелен стороне AC. Докажите, что AD + DE > AB + BE.
Докажите, что любая диагональ четырёхугольника меньше половины его периметра.
Пусть AA1 и BB1 — медианы треугольника ABC. Докажите,
что
AA1 + BB1 >
Радиус окружности равен 10, данная точка удалена от центра на расстояние, равное 15. Найдите её наименьшее и наибольшее расстояния от точек окружности.
Докажите, что каждая сторона четырёхугольника меньше суммы трех других его сторон.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 289]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке