ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть z1, z2, ..., zn – вершины выпуклого многоугольника. Найдите геометрическое место точек z = λ1z1 + λ2z2 + ... + λnzn, где λ1, λ2, ..., λn – такие действительные положительные числа, что λ1 + λ2 + ... + λn = 1. Архитектор хочет расположить семь высотных зданий так, чтобы, гуляя по городу, можно было увидеть их шпили в любом (циклическом) порядке.
Найдите углы ромба, если высота, проведённая из вершины тупого угла, делит противолежащую сторону пополам.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD. P - точка пересечения диагоналей. Из вершин выпуклого четырехугольника опущены
перпендикуляры на диагонали. Докажите, что четырехугольник,
образованный основаниями перпендикуляров, подобен исходному
четырехугольнику.
В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности. Длины сторон треугольника ABC равны a, b и c (AB = c, BC = a, CA = b и a < b < c). На лучах BC и AC отмечены соответственно такие точки B1 и A1, что BB1 = AA1 = c. На лучах CA и BA отмечены соответственно такие точки C2 и B2, что CC2 = BB2 = a. Найти A1B1 : C2B2. На экране компьютера сгенерирована некоторая конечная последовательность нулей и единиц. С ней можно производить следующую операцию: набор цифр "01" заменять на набор цифр "1000". Может ли такой процесс замен продолжаться бесконечно или когда-нибудь он обязательно прекратится?
Две стороны треугольника равны 2
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 407]
Две стороны треугольника равны 2
Докажите, что площадь треугольника равна половине произведения двух его соседних сторон на синус угла между ними, т.е.
S
где a и b — стороны треугольника,
Докажите, что площадь параллелограмма произведению двух его соседних сторон на синус угла между ними, т.е.
S = ab sin
где a и b — соседние стороны параллелограмма,
Докажите, что площадь треугольника равна половине произведения двух его высот, делённого на синус угла между сторонами, на которые эти высоты опущены, т.е.
S
где ha и hb — высоты, опущенные на стороны, равные a и b,
а
Докажите, что площадь треугольника равна удвоенному квадрату радиуса окружности, описанной около треугольника, умноженному на произведение синусов углов треугольника, т.е.
S
где
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 407]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке