Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

а)  sin$ \alpha$sin$ \beta$sin$ \gamma$ $ \leq$ 3$ \sqrt{3}$/8;
б)  cos($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) $ \leq$ 3$ \sqrt{3}$/8.

Вниз   Решение


При каких целых значениях m число Р = 1 + 2m + 3m2 + 4m3 + 5m4 + 4m5 + 3m6 + 2m7 + m8 является квадратом целого числа?

ВверхВниз   Решение


Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


Высоты AA1 и BB1 треугольника ABC пересекаются в точке H. Прямая CH пересекает полуокружность с диаметром AB, проходящую через точки A1 и B1, в точке D. Отрезки AD и BB1 пересекаются в точке M, BD и AA1 – в точке N. Докажите, что описанные окружности треугольников B1DM и A1DN касаются.

ВверхВниз   Решение


На основаниях трапеции как на сторонах построены во внешнюю сторону два квадрата. Докажите, что отрезок, соединяющий центры квадратов, проходит через точку пересечения диагоналей трапеции.

ВверхВниз   Решение


Дан прямоугольный треугольник. Впишите в него прямоугольник с общим прямым углом, у которого диагональ минимальна.

ВверхВниз   Решение


В корзине лежало не более 70 грибов, среди которых 52% – белые. Если выкинуть три самых маленьких гриба, то белых станет половина.
Сколько грибов в корзине?

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC взяты соответственно точки M и N, причём  MN || BC.  На отрезке MN взята точка P, причём  MP = 1/3 MN.  Прямая AP пересекает сторону BC в точке Q. Докажите, что  BQ = 1/3 BC.

ВверхВниз   Решение


Автор: Акопян Э.

В начале года в 7 классе учились 25 человек. После того как туда пришли семеро новеньких, процентный состав отличников увеличился на 10 (если в начале года он был a%, то теперь –  (a + 10)%).  Сколько теперь отличников в классе?

ВверхВниз   Решение


Шестиугольник ABCDEF — вписанный, причём  AB || DE  и  BC || EF.  Докажите, что  CD || EF.

ВверхВниз   Решение


Один из углов треугольника равен α. Найдите угол между прямыми, содержащими высоты, проведённые из вершин двух других углов.

ВверхВниз   Решение


Две стороны треугольника равны 2$ \sqrt{2}$ и 3, площадь треугольника равна 3. Найдите третью сторону.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 184]      



Задача 108026

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования (тригонометрия) ]
[ Площадь четырехугольника ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

Прислать комментарий     Решение

Задача 111354

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Треугольник (построения) ]
Сложность: 3
Классы: 10,11

Дана прямая и две точки A и B, лежащие по одну сторону от этой прямой на равном расстоянии от неё.
Как с помощью циркуля и линейки найти на прямой такую точку C, что произведение  AC·BC  будет наименьшим?

Прислать комментарий     Решение

Задача 55343

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$, AB = c. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 55065

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC, в котором угол B равен 30o, AB = 4, BC = 6. Биссектриса угла B пересекает сторону AC в точке D. Найдите площадь треугольника ABD.

Прислать комментарий     Решение


Задача 55299

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Две стороны треугольника равны 2$ \sqrt{2}$ и 3, площадь треугольника равна 3. Найдите третью сторону.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 184]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .