ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный. Решение |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 401]
Точка M находится на продолжении хорды AB. Докажите, что если точка C окружности такова, что MC2 = MA . MB, то MC — касательная к окружности.
Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.
На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и ABC = ACD.
Окружность касается сторон AB и BC треугольника ABC соответственно в точках D и E. Найдите высоту треугольника ABC, опущенную из точки A, если AB = 5, AC = 2, а точки A, D, E, C лежат на одной окружности.
В окружность вписан треугольник. Вторая окружность, концентрическая первой, касается одной стороны треугольника и делит каждую из двух других сторон на три равные части. Найдите отношение радиусов этих окружностей.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|