ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагональ AC вписанного четырёхугольника ABCD является биссектрисой угла DAB.
Докажите, что один из двух треугольников, отсекаемых от треугольника ABC диагональю BD, подобен треугольнику ABC.

   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 1275]      



Задача 54684

Темы:   [ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Хорды AB и CD окружности пересекаются в точке M, причём  AM = AC.
Докажите, что продолжения высот AA1 и DD1 треугольников CAM и BDM пересекаются на окружности.

Прислать комментарий     Решение

Задача 55234

Темы:   [ Неравенство треугольника ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Пусть точка C – середина дуги AB некоторой окружности, а D – любая другая точка этой дуги.
Докажите, что  AC + BC > AD + BD.

Прислать комментарий     Решение

Задача 55402

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Вершины B и C треугольника ABC с прямым углом A скользят по сторонам прямого угла с вершиной P. Найдите геометрическое место вершин A, если точки P и A лежат:
  а) по разные стороны от прямой BC;
  б) по одну сторону от прямой BC.

.

Прислать комментарий     Решение


Задача 55475

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена прямая, пересекающая эти окружности соответственно в точках C1 и C2, отличных от A.
Докажите, что отрезок C1C2 виден из точки B под одним и тем же углом для любой прямой C1C2.

Прислать комментарий     Решение

Задача 55508

Темы:   [ Признаки подобия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Диагональ AC вписанного четырёхугольника ABCD является биссектрисой угла DAB.
Докажите, что один из двух треугольников, отсекаемых от треугольника ABC диагональю BD, подобен треугольнику ABC.

Прислать комментарий     Решение

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .