Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  A + B?

Вниз   Решение


В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.

ВверхВниз   Решение


В прямоугольном треугольнике ABC  (∠B = 90°)  проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что  OB1 = OB2.

ВверхВниз   Решение


Докажите, что при повороте на угол $ \alpha$ с центром в начале координат точка с координатами (x, y) переходит в точку

(x cos$\displaystyle \alpha$ - y sin$\displaystyle \alpha$x sin$\displaystyle \alpha$ + y cos$\displaystyle \alpha$).


ВверхВниз   Решение


В остроугольном треугольнике KLN высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла K пересекает отрезок OH в такой точке M, что OM : MH = 3 : 1. Найдите площадь треугольника KLN, если LN = 4, а разность углов L и N равна 30o.

ВверхВниз   Решение


В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

ВверхВниз   Решение


Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.

ВверхВниз   Решение


Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

ВверхВниз   Решение


Точки A', B' и C' – середины сторон соответственно BC, CA и AB треугольника ABC, а BH – его высота.
Докажите, что если описанные окружности треугольников AHC' и CHA' окружности проходят через точку M, то  ∠ABM = ∠CBB'.

ВверхВниз   Решение


Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?

ВверхВниз   Решение


Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.

ВверхВниз   Решение


Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1026]      



Задача 55576

Темы:   [ Свойства симметрий и осей симметрии ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?

Прислать комментарий     Решение


Задача 55555

Темы:   [ Симметрия помогает решить задачу ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.

Прислать комментарий     Решение

Задача 55631

Темы:   [ Центральная симметрия ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.

Прислать комментарий     Решение

Задача 55691

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Дан угол ABC и прямая l . Параллельно прямой l с помощью циркуля и линейки проведите прямую, на которой стороны угла ABC высекают отрезок, равный данному.
Прислать комментарий     Решение


Задача 55715

Темы:   [ Поворот (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .