ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Повороты на $60^\circ$ и $120^\circ$
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах треугольника ABC вне его построены правильные треугольники ABC1, BCA1 и CAB1. Доказать, что + + = . Решение С помощью циркуля и линейки постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трёх данных параллельных прямых. Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
Плоскость разбита тремя сериями параллельных прямых на равные между собой
равносторонние треугольники.
Пусть M – центр тяжести (точка пересечения медиан) треугольника ABC. При повороте на 120° вокруг точки M точка B переходит в точку P, при повороте на 240° вокруг точки M (в том же направлении) точка C переходит в точку Q. Докажите, что либо треугольник APQ – правильный, либо точки A, P, Q совпадают.
С помощью циркуля и линейки постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трёх данных параллельных прямых.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|