Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 50]
|
|
Сложность: 5 Классы: 7,8,9
|
На сторонах равностороннего треугольника $ABC$ построены во внешнюю сторону треугольники $AB'C$, $CA'B$, $BC'A$ так, что получился шестиугольник $AB'CA'BC'$, в котором каждый из углов $A'BC'$, $C'AB'$, $B'CA'$ больше $120^\circ$, а для сторон выполняются равенства $AB'=AC'$, $BC'=BA'$, $CA'=CB'$. Докажите, что из отрезков $AB'$, $BC'$, $CA'$ можно составить треугольник.
|
|
Сложность: 5 Классы: 10,11
|
Три равные окружности касаются друг друга. Из произвольной точки окружности,
касающейся внутренним образом этих окружностей, проведены касательные к ним.
Доказать, что сумма длин двух касательных равна длине третьей.
На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги.
Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный.
Дан выпуклый четырёхугольник ABCD и точка O внутри него.
Известно, что ∠AOB = ∠COD = 120°, AO = OB и CO = OD. Пусть K, L и M – середины отрезков AB, BC и CD соответственно. Докажите, что
а) KL = LM;
б) треугольник KLM – правильный.
В ромбе ABCD угол ABC равен
120o. На сторонах AB
и BC взяты точки P и Q, причём AP = BQ. Найдите углы
треугольника PQD.
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 50]