ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах выпуклого n-угольника внешним образом построены правильные
n-угольники. Докажите, что их центры образуют правильный n-угольник тогда и
только тогда, когда исходный n-угольник аффинно правильный.
Исходно на доске написаны многочлены x³ – 3x² + 5 и x² – 4x. Если на доске уже написаны многочлены f(x) и g(x), разрешается дописать на неё многочлены f(x) ± g(x), f(x)g(x), f(g(x)) и cf(x), где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида xn – 1 (при натуральном n)?
Найдите радиус окружности, описанной около треугольника со сторонами 5 и 8 и углом между ними 60o.
Докажите, что у равнобедренного треугольника: В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке. Дан вписанный $n$-угольник. Оказалось что середины всех его сторон лежат на одной окружности. Стороны $n$-угольника отсекают от этой окружности $n$ дуг, лежащих вне $n$-угольника. Докажите, что эти дуги можно покрасить в красный и синий цвет так, чтобы сумма длин красных дуг равнялась сумме длин синих. Докажите, что предельная точка пучка является общей точкой окружностей
ортогонального пучка, и наоборот.
На сторонах аффинно правильного многоугольника
A1A2...An с центром O
внешним образом построены квадраты
Aj + 1AjBjCj + 1
(j = 1,..., n).
Докажите, что отрезки BjCj и OAj перпендикулярны, а их отношение равно
2 Докажите, что любая окружность пучка либо пересекает радикальную ось в двух
фиксированных точках (эллиптический пучок),
либо касается радикальной оси в фиксированной точке (параболический
пучок), либо не пересекает радикальную ось
(гиперболический пучок).
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 125]
Решите задачу 1.67, используя свойства радикальной оси.
Внутри выпуклого многоугольника расположено несколько
попарно непересекающихся кругов различных радиусов.
Докажите, что многоугольник можно разрезать на
маленькие многоугольники так, чтобы все они были выпуклыми
и в каждом из них содержался ровно один из данных кругов.
а) Докажите, что пучок окружностей полностью задаётся парой окружностей.
Пусть
f (x, y) = x2 + y2 + a1x + b1y + c1 и
g(x, y) = x2 + y2 + a2x + b2y + c2.
Докажите, что для любого вещественного
Докажите, что любая окружность пучка либо пересекает радикальную ось в двух
фиксированных точках (эллиптический пучок),
либо касается радикальной оси в фиксированной точке (параболический
пучок), либо не пересекает радикальную ось
(гиперболический пучок).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 125]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке