ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что произвольная последовательность Qn, заданная условиями

Q0 = $\displaystyle \alpha$,    Q1 = $\displaystyle \beta$,    Qn + 2 = Qn + 1 + Qn    (n $\displaystyle \geqslant$ 0),

может быть выражена через числа Фибоначчи Fn и числа Люка Ln (определение чисел Люка смотри в задаче 3.133).

Вниз   Решение


Стороны треугольника равны a, b, c. Докажите, что медиана, проведённая к стороне c, равна $ {\frac{1}{2}}$$ \sqrt{2a^{2}+2b^{2}-c^{2}}$.

ВверхВниз   Решение


Первоклассник Петя знает только цифру 1. Докажите, что он может написать число, делящееся на 1989.

ВверхВниз   Решение


Выпишем в ряд все правильные дроби со знаменателем n и сделаем возможные сокращения. Например, для  n = 12  получится следующий ряд чисел:  0/1, 1/12, 1/6, 1/4, 1/3, 5/12, 1/2, 7/12, 2/3, 3/4, 5/6, 11/12  Сколько получится дробей со знаменателем d, если d – некоторый делитель числа n?

ВверхВниз   Решение


Из чисел x1, x2, x3, x4, x5 можно образовать десять попарных сумм; обозначим их через a1, a2, ..., a10. Доказать, что зная числа a1, a2, ..., a10 (но не зная, разумеется, суммой каких именно двух чисел является каждое из них), можно восстановить числа x1, x2, x3, x4, x5.

ВверхВниз   Решение


Существует ли правильный треугольник с вершинами в узлах целочисленной решетки?

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, лежащие на одной прямой. Докажите, что

$\displaystyle {\frac{AB}{BC_1}}$ . $\displaystyle {\frac{C_1A_1}{B_1A_1}}$ . $\displaystyle {\frac{A_1B}{BC}}$ . $\displaystyle {\frac{CB_1}{B_1A}}$ = 1.


Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 181]      



Задача 56906

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, лежащие на одной прямой. Докажите, что

$\displaystyle {\frac{AB}{BC_1}}$ . $\displaystyle {\frac{C_1A_1}{B_1A_1}}$ . $\displaystyle {\frac{A_1B}{BC}}$ . $\displaystyle {\frac{CB_1}{B_1A}}$ = 1.


Прислать комментарий     Решение

Задача 56907

 [Теорема Дезарга]
Темы:   [ Теоремы Чевы и Менелая ]
[ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 9,10,11

Прямые  AA1, BB1, CC1 пересекаются в одной точке O. Докажите, что точки пересечения прямых AB и A1B1BC и B1C1AC и A1C1 лежат на одной прямой (Дезарг).
Прислать комментарий     Решение


Задача 56908

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

На одной прямой взяты точки A1, B1 и C1, а на другой — точки A2, B2 и C2. Прямые A1B2 и A2B1B1C2 и B2C1C1A2 и C2A1 пересекаются в точках C, A и B соответственно. Докажите, что точки A, B и C лежат на одной прямой (Папп).
Прислать комментарий     Решение


Задача 56909

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

На сторонах AB, BC и CD четырехугольника ABCD (или на их продолжениях) взяты точки K, L и M. Прямые KL и AC пересекаются в точке PLM и BD — в точке Q. Докажите, что точка пересечения прямых KQ и MP лежит на прямой AD.
Прислать комментарий     Решение


Задача 56910

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

Продолжения сторон AB и CD четырехугольника ABCD пересекаются в точке P, а продолжения сторон BC и AD — в точке Q. Через точку P проведена прямая, пересекающая стороны BC и AD в точках E и F. Докажите, что точки пересечения диагоналей четырехугольников  ABCD, ABEF и CDFE лежат на прямой, проходящей через точку Q.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .