ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности фиксированы точки A и B, а точка C перемещается по этой окружности. Найдите множество точек пересечения: а) высот; б) биссектрис треугольников ABC.

   Решение

Задачи

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1275]      



Задача 54878

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Около треугольника ABC описана окружность. Продолжение биссектрисы BM треугольника ABC пересекает эту окружность в точке N, причём BN – диаметр данной окружности. Найдите отношение отрезков BC и AN, если косинус угла ACB равен 1/5.

Прислать комментарий     Решение

Задача 55395

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства касательной ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

На окружности даны точки A, B и C, причём точка B более удалена от от прямой l, касающейся окружности в точке A, чем C. Прямая AC пересекает прямую, проведённую через точку B параллельно l, в точке D. Докажите, что  AB² = AC·AD.

Прислать комментарий     Решение

Задача 55473

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что  KX = XL.

Прислать комментарий     Решение

Задача 55632

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.

Прислать комментарий     Решение

Задача 57147

Темы:   [ ГМТ и вписанный угол ]
[ Углы между биссектрисами ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 8,9

На окружности фиксированы точки A и B, а точка C перемещается по этой окружности. Найдите множество точек пересечения: а) высот; б) биссектрис треугольников ABC.
Прислать комментарий     Решение


Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .