ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны n красных и n синих точек, никакие три из которых не лежат на одной прямой. Докажите, что можно провести n отрезков с разноцветными концами, не имеющих общих точек.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 289]      



Задача 67181

Темы:   [ Неравенство треугольника (прочее) ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 7,8,9

На сторонах равностороннего треугольника $ABC$ построены во внешнюю сторону треугольники $AB'C$, $CA'B$, $BC'A$ так, что получился шестиугольник $AB'CA'BC'$, в котором каждый из углов $A'BC'$, $C'AB'$, $B'CA'$ больше $120^\circ$, а для сторон выполняются равенства $AB'=AC'$, $BC'=BA'$, $CA'=CB'$. Докажите, что из отрезков $AB'$, $BC'$, $CA'$ можно составить треугольник.
Прислать комментарий     Решение


Задача 78050

Тема:   [ Неравенство треугольника ]
Сложность: 5
Классы: 9

Неравенство

Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) > $\displaystyle {\textstyle\frac{1}{2}}$(ABc2 + BCa2 + CAb2),

где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0, C > 0. Можно ли из отрезков a, b, c составить треугольник?
Прислать комментарий     Решение

Задача 57317

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 5+
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что

a2b(a - b) + b2c(b - c) + c2a(c - a) $\displaystyle \geq$ 0.

Прислать комментарий     Решение

Задача 57323

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5+
Классы: 8

На плоскости даны n красных и n синих точек, никакие три из которых не лежат на одной прямой. Докажите, что можно провести n отрезков с разноцветными концами, не имеющих общих точек.
Прислать комментарий     Решение


Задача 57325

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5+
Классы: 8

Пусть дан выпуклый (2n + 1)-угольник  A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с вершинами в его вершинах наибольшую длину имеет ломаная  A1A2A3...A2n + 1A1.
Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .