Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.

Вниз   Решение


Из последовательности  a,  a + d,  a + 2d,  a + 3d, ...,  являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d  рационально. Докажите это.

ВверхВниз   Решение


Расположить на прямой систему отрезков длины 1, не имеющих общих концов и общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью и любым начальным членом имела общую точку с некоторым отрезком системы.

ВверхВниз   Решение


Автор: Жуков Г.

Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?

ВверхВниз   Решение


Дана прямоугольная трапеция. Окружность, построенная на меньшей боковой стороне как на диаметре, касается другой боковой стороны и делит её на отрезки, равные a и b. Найдите радиус окружности.

ВверхВниз   Решение


Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
  а) Докажите, что число её членов меньше 100.
  б) Приведите пример такой прогрессии с 72 членами.
  в) Докажите, что число членов всякой такой прогрессии не больше 72.

ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
ab cos$ \gamma$ + bc cos$ \alpha$ + ca cos$ \beta$ = (a2 + b2 + c2)/2.

ВверхВниз   Решение


Докажите, что если  $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ = $ {\frac{1}{l_a}}$, то  $ \angle$A = 120o.

ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
а)  ctg($ \alpha$/2) + ctg($ \beta$/2) + ctg($ \gamma$/2) = p/r;
б)  tg($ \alpha$/2) + tg($ \beta$/2) + tg($ \gamma$/2) = $ \left(\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right.$$ {\frac{a}{r_a}}$ + $ {\frac{b}{r_b}}$ + $ {\frac{c}{r_c}}$$ \left.\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right)$/2.

ВверхВниз   Решение


Найдите числа, равные удвоенной сумме своих цифр.

ВверхВниз   Решение


Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?

ВверхВниз   Решение


В треугольнике ABC высота AH равна медиане BM. Найдите угол MBC.

ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
tg$ \alpha$ + tg$ \beta$ + tg$ \gamma$ = tg$ \alpha$tg$ \beta$tg$ \gamma$.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 1331]      



Задача 57625

Тема:   [ Синусы и косинусы углов треугольника ]
Сложность: 3
Классы: 9

α, β и γ - углы треугольника ABC. Докажите, что
ab cos$ \gamma$ + bc cos$ \alpha$ + ca cos$ \beta$ = (a2 + b2 + c2)/2.
Прислать комментарий     Решение


Задача 57628

Тема:   [ Тангенсы и котангенсы углов треугольника ]
Сложность: 3
Классы: 9

α, β и γ - углы треугольника ABC. Докажите, что
а)  ctg($ \alpha$/2) + ctg($ \beta$/2) + ctg($ \gamma$/2) = p/r;
б)  tg($ \alpha$/2) + tg($ \beta$/2) + tg($ \gamma$/2) = $ \left(\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right.$$ {\frac{a}{r_a}}$ + $ {\frac{b}{r_b}}$ + $ {\frac{c}{r_c}}$$ \left.\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right)$/2.
Прислать комментарий     Решение


Задача 57629

Тема:   [ Тангенсы и котангенсы углов треугольника ]
Сложность: 3
Классы: 9

α, β и γ - углы треугольника ABC. Докажите, что
tg$ \alpha$ + tg$ \beta$ + tg$ \gamma$ = tg$ \alpha$tg$ \beta$tg$ \gamma$.
Прислать комментарий     Решение


Задача 57634

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

Докажите, что если  $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ = $ {\frac{1}{l_a}}$, то  $ \angle$A = 120o.
Прислать комментарий     Решение


Задача 57635

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

В треугольнике ABC высота AH равна медиане BM. Найдите угол MBC.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 1331]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .