Версия для печати
Убрать все задачи
Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой.

Решение
В треугольнике
ABC точка
I — центр вписанной
окружности. Точки
M и
N — середины сторон
BC и
AC соответственно. Известно, что угол
AIN
прямой. Докажите, что угол
BIM — также прямой.


Решение
Из точки, лежащей внутри выпуклого
n-угольника, проведены лучи,
перпендикулярные его сторонам и пересекающие стороны (или их
продолжения). На этих лучах отложены векторы
a1,...,
an, длины которых равны длинам соответствующих сторон.
Докажите, что
a1 +...+
an = 0.

Решение