ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Постройте точки X и Y на сторонах AB и BC
треугольника ABC так, что AX = BY и XY| AC.
Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.
С помощью циркуля и линейки проведите через данную точку, лежащую внутри данного угла, прямую, отсекающую от данного угла треугольник заданного периметра. Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают? Докажите, что если в остроугольном
треугольнике
ha = lb = mc, то этот треугольник равносторонний.
Известно, что 35! = 10333147966386144929*66651337523200000000. Найдите цифру, заменённую звездочкой. Доказать: произведение Доказать: сумма Докажите, что из точки A, лежащей вне окружности,
можно провести ровно две касательные к окружности, причем
длины этих касательных (т. е. расстояния от A до точек
касания) равны.
Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны
и противоположно ориентированы. Докажите, что тогда
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]
В окружность вписаны равнобедренные трапеции ABCD
и
A1B1C1D1 с соответственно параллельными сторонами.
Докажите, что AC = A1C1.
Из точки M, двигающейся по окружности, опускаются
перпендикуляры MP и MQ на диаметры AB и CD.
Докажите, что длина отрезка PQ не зависит от положения точки M.
Внутри квадрата ABCD выбрана точка M так, что
Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны
и противоположно ориентированы. Докажите, что тогда
Докажите, что если треугольники abc и a'b'c' на комплексной плоскости собственно подобны, то
(b - a)/(c - a) = (b' - a')/(c' - a').
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке