ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В равнобедренном треугольнике ABC с основанием AC проведена
медиана BM. На ней взята точка D. Докажите равенство треугольников:
Прямоугольный треугольник ABC (∠A = 90°) и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по одну сторону от прямой AC. Найдите расстояние между центрами квадратов, если AB = a. Внутри треугольника имеются две точки. Расстояние от одной из них до сторон треугольника равны 1, 3 и 15, а от другой (в том же порядке) – 4, 5 и 11.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части. Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4, AD = 3. Найдите сторону BC. В выпуклом пятиугольнике ABCDE углы при вершинах B и D – прямые, ∠BCA = ∠DCE, а точка M – середина стороны AE. Доказать, что MB = MD. Из точки, лежащей внутри выпуклого n-угольника, проведены лучи,
перпендикулярные его сторонам и пересекающие стороны (или их
продолжения). На этих лучах отложены векторы
a1,...,an, длины которых равны длинам соответствующих сторон.
Докажите, что
a1 +...+ an = 0.
Пусть a и b — целые числа. Напишем число b справа от числа a. Если число a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число a1 напишем под числом a. Справа от числа a1 напишем число 2b. С числом a1 проделаем ту же операцию, что и с числом a, и, получив число a2, напишем его под числом a1. Справа от числа a2 напишем число 4b и так далее. Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1. Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные числа, равна произведению ab. Прямоугольный треугольник ABC (∠A = 90°) и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по разные стороны от прямой AC. Найдите расстояние между центрами квадратов, если AB = a, AC = b. Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины. В выпуклом четырёхугольнике ABCD точка E – пересечение
диагоналей. Известно, что площадь каждого из треугольников ABE и
DCE равна 7, а площадь всего четырёхугольника не превосходит 28;
AD = а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)? б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)? в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек? |
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1010]
Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?
а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)? б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)? в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?
Докажите тождества: а) б) в) г) д) (Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что
Докажите равенство
В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1010]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке