ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Дан ромб с острым углом
Около окружности описана равнобедренная трапеция ABCD. Боковая сторона AB касается окружности в точке M, а основание AD – в точке N. Отрезки MN и AC пересекаются в точке P, причём NP : PM = 2. Найдите отношение AD : BC. Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.). Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки S. Таракан A бежит вдвое медленнее, чем B, и втрое медленнее, чем C. Точки X, Y на отрезке SC таковы, что SX=XY=YC. Прямые AX и BY пересекаются в точке Z. Найдите ГМТ пересечения медиан треугольника ZAB. В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q. Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если AB = c, AM = m и AN = n. Докажите тождества: а) б) в) г) д) (Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что |
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1010]
Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?
а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)? б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)? в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?
Докажите тождества: а) б) в) г) д) (Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что
Докажите равенство
В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1010]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке