|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки. Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля? Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A? Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке? Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции. У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника? Исследуйте последовательности на сходимость: а) xn + 1 = б) xn + 1 = sin xn, x0 = a в) xn + 1 = Дан треугольник ABC. Известно, что AB = 4, AC = 2 и BC = 3. Биссектриса угла BAC пересекает сторону BC в точке K. Прямая, проходящая через точку B параллельно AC, пересекает продолжение биссектрисы AK в точке M. Найдите KM. На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что a = b. 10 журналов лежат на журнальном столе, полностью покрывая его. Докажите, что можно убрать пять из них так, что оставшиеся журналы будут покрывать не менее половины площади стола. Докажите, что число Фибоначчи Fn совпадает с ближайшим целым числом к |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 234]
Докажите, что число Фибоначчи Fn совпадает с ближайшим целым числом к
Q0 = может быть выражена через числа
Фибоначчи Fn и числа Люка Ln
(определение чисел Люка смотри в задаче
3.133).
Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности.
Дана последовательность чисел F1, F2, ...; F1 = F2 = 1 и Fn+2 = Fn + Fn+1. Доказать, что F5k делится на 5 при k = 1, 2, ... .
Последовательность натуральных чисел {xn} строится по следующему правилу: x1 = 2, xn+1 = [1,5xn]. Доказать, что в последовательности {xn} бесконечно много
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 234] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|