ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны. Через точку A проведена прямая l, пересекающая
окружность S с центром O в точках M и N и не проходящая
через O. Пусть M' и N' — точки, симметричные M и N
относительно OA, а A' — точка пересечения прямых MN' и M'N.
Докажите, что A' совпадает с образом точки A при инверсии
относительно S (и, следовательно, не зависит от выбора
прямой l).
Докажите, что площадь треугольника, стороны которого
равны медианам треугольника площади S, равна 3S/4.
Пусть O — точка пересечения диагоналей трапеции ABCD
(
AB || CD), A1 и B1 — точки, симметричные
точкам A и B относительно биссектрисы угла AOB. Докажите,
что
Докажите, что уравнения |
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 488]
Докажите, что уравнения
В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.
Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.
Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать?
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 488]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке