ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что  a + b + c = 0,  a2 + b2 + c2 = 1.  Найдите  a4 + b4 + c4.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



Задача 97871

Темы:   [ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
[ Теорема Виета ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Даны три действительных числа: a, b и c. Известно, что  a + b + c > 0,  ab + bc + ca > 0,  abc > 0.  Докажите, что  a > 0,  b > 0  и  c > 0.

Прислать комментарий     Решение

Задача 61012

Темы:   [ Тождественные преобразования ]
[ Треугольник Паскаля и бином Ньютона ]
[ Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  a + b + c = 0,  то   2(a5 + b5 + c5) = 5abc(a2 + b2 + c2).

Прислать комментарий     Решение

Задача 61031

Темы:   [ Тождественные преобразования ]
[ Симметрические многочлены ]
[ Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Известно, что  a + b + c = 0,  a2 + b2 + c2 = 1.  Найдите  a4 + b4 + c4.

Прислать комментарий     Решение

Задача 61035

Темы:   [ Симметрические многочлены ]
[ Кубические многочлены ]
[ Теорема Виета ]
[ Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Постройте многочлен, корни которого равны квадратам корней многочлена  x3 + x2 – 2x – 1.

Прислать комментарий     Решение

Задача 61040

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Теорема Виета ]
Сложность: 4-
Классы: 8,9,10,11

Решите системы:

а)  

б)  x(y + z) = 2,  y(z + x) = 2,  z(x + y) = 3;

в)  x2 + y2 + x + y = 32,  12(x + y) = 7xy;

г)  

д)  x + y + z = 1,  xy + xz + yz = –4,  x3 + y3 + z3 = 1;

е)  x2 + y2 = 12,  x + y + xy = 9.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .