ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите уравнения

а) $ \sqrt{1-x^2}$ = 4x3 - 3x;     в) $ \sqrt{1-x}$ = 2x2 - 1 + 2x$ \sqrt{1-x^2}$;

б) x + $ {\dfrac{x}{\sqrt{x^2-1}}}$ = $ {\dfrac{35}{12}}$;     г) $ \sqrt{\dfrac{1-\vert x\vert}2}$ = 2x2 - 1.

   Решение

Задачи

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 1221]      



Задача 61282

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Тригонометрические замены ]
Сложность: 4-
Классы: 9,10,11

Решите систему
    y = 2x² – 1,
    z = 2y² – 1,
    x = 2z² – 1.

Прислать комментарий     Решение

Задача 61285

Темы:   [ Иррациональные уравнения ]
[ Тригонометрические замены ]
Сложность: 4-
Классы: 9,10,11

Решите уравнения

а) $ \sqrt{1-x^2}$ = 4x3 - 3x;     в) $ \sqrt{1-x}$ = 2x2 - 1 + 2x$ \sqrt{1-x^2}$;

б) x + $ {\dfrac{x}{\sqrt{x^2-1}}}$ = $ {\dfrac{35}{12}}$;     г) $ \sqrt{\dfrac{1-\vert x\vert}2}$ = 2x2 - 1.

Прислать комментарий     Решение

Задача 61333

 [Метод Лобачевского]
Темы:   [ Многочлены (прочее) ]
[ Итерации ]
[ Теорема Виета ]
Сложность: 4-
Классы: 10,11

Пусть многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  имеет корни  x1, x2, ..., xn,  причем  |x1| > |x2| > ... > |xn|.  В задаче  60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа     На основе этого рассуждения Лобачевский придумал метод для приближенного поиска корней многочлена P(x). Он заключается в следующем. Строится такая последовательность многочленов  P0(x), P1(x), P2(x), ...,  что  P0(x) = P(x)  и многочлен Pk(x) имеет корни     Пусть     Докажите, что

  а)  

  б)  

Прислать комментарий     Решение

Задача 61481

Темы:   [ Текстовые задачи (прочее) ]
[ Итерации ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?

Прислать комментарий     Решение

Задача 64308

Темы:   [ Математическая логика (прочее) ]
[ Перебор случаев ]
Сложность: 4-
Классы: 6,7

В некотором государстве живут граждане трёх типов:  а) дурак считает всех дураками, а себя умным;  б) скромный умный про всех знает правильно, а себя считает дураком;  в) уверенный умный про всех знает правильно, а себя считает умным. В думе – 200 депутатов. Премьер-министр провёл анонимный опрос думцев: сколько умных в этом зале сейчас находится? По данным анкет он не смог узнать количество умных. Но тут из поездки вернулся единственный депутат, не участвовавший в опросе. Он заполнил анкету про всю думу, включая себя, и прочитав её, премьер-министр всё понял. Сколько умных могло быть в думе (включая путешественника)?

Прислать комментарий     Решение

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .