Страница: 1
2 3 4 5 6 7 >> [Всего задач: 31]
Дан многочлен x(x + 1)(x + 2)(x + 3). Найти его наименьшее значение.
|
|
Сложность: 3+ Классы: 10,11
|
Найдите наибольшее значение выражения
x +
y.
|
|
Сложность: 4- Классы: 9,10,11
|
Решите уравнение:
+ 2
x2 = 1.
|
|
Сложность: 5- Классы: 10,11
|
а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два
числа x и y, что 0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?
|
|
Сложность: 5- Классы: 9,10
|
Дана функция , где трёхчлены x² + ax + b и x² + cx + d не имеют общих корней. Докажите, что следующие два утверждения равносильны:
1) найдётся числовой интервал, свободный от значений функции;
2) f(x) представима в виде: f(x) = f1(f2(...fn–1(fn(x))...)), где каждая из функций fi(x) есть функция одного из видов:
kix + bi, x–1, x².
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 31]