Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Что больше: 300! или 100300?

Вниз   Решение


Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

ВверхВниз   Решение


Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.

ВверхВниз   Решение


Автор: Ивлев Ф.

В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом в точке A. Найдите радиусы окружностей, если хорды, соединяющие точку A с точками касания с одной из общих внешних касательных, равны 6 и 8.

ВверхВниз   Решение


В треугольнике ABC на сторонах AB и BC выбраны соответственно точки A1 и C1, причём A1B : AB = 1 : 2 и BC1 : BC = 1 : 4. Через точки A1, B и C1 проведена окружность. Через точку A1 проведена прямая, пересекающая отрезок BC1 в точке D, а окружность в точке E. Найдите площадь треугольника A1C1E, если BC1 = 6, BD = 2, DE = 3, а площадь треугольника ABC равна 32.

ВверхВниз   Решение


Пусть характеристическое уравнение (11.3 ) последовательности (11.2) имеет комплексные корни x1, 2 = a±ib = re±i$\scriptstyle \varphi$. Докажите, что для некоторой пары чисел c1, c2 будет выполняться равенство

an = rn(c1cos n$\displaystyle \varphi$ + c2sin n$\displaystyle \varphi$).


ВверхВниз   Решение


В треугольнике ABC угол при вершине A равен 60o. Через точки B, C и точку D, лежащую на стороне AB, проведена окружность, пересекающая сторону AC в точке E. Найдите AE, если AD = 3, BD = 1 и EC = 4. Найдите радиус окружности.

ВверхВниз   Решение


Пусть CM – медиана треугольника ABC. Известно, что  ∠A + ∠MCB = 90°.  Докажите, что треугольник ABC – равнобедренный или прямоугольный.

ВверхВниз   Решение


Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Докажите, что AM – биссектриса угла BAC.

Вверх   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 772]      



Задача 53989

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .
Прислать комментарий     Решение


Задача 53999

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

Две окружности касаются друг друга внутренним образом. Известно, что два радиуса большей окружности, угол между которыми равен 60o , касаются меньшей окружности. Найдите отношение радиусов окружностей.
Прислать комментарий     Решение


Задача 54843

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность, центр которой лежит на гипотенузе AB прямоугольного треугольника ABC, касается двух катетов AC и BC соответственно в точках E и D.
Найдите угол ABC, если известно, что  AE = 1,  BD = 3.

Прислать комментарий     Решение

Задача 64561

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства касательной ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Докажите, что AM – биссектриса угла BAC.

Прислать комментарий     Решение

Задача 66642

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Окружность, вписанная в угол ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы.
Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .