ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности отмечены 10 точек, занумерованные по часовой стрелке: A1, A2, ..., A10, причём их можно разбить на пары симметричных относительно центра окружности. Изначально в каждой отмеченной точке сидит по кузнечику. Каждую минуту один из кузнечиков прыгает вдоль окружности через своего соседа так, чтобы расстояние между ними не изменилось. При этом нельзя пролетать над другими кузнечиками и попадать в точку, где уже сидит кузнечик. Через некоторое время оказалось, что какие-то 9 кузнечиков сидят в точках A1, A2, ..., A9, а десятый сидит на дуге A9A10A1. Можно ли утверждать, что он сидит именно в точке A10?

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 109]      



Задача 64718

Темы:   [ Инварианты ]
[ Процессы и операции ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9,10

На окружности отмечены 10 точек, занумерованные по часовой стрелке: A1, A2, ..., A10, причём их можно разбить на пары симметричных относительно центра окружности. Изначально в каждой отмеченной точке сидит по кузнечику. Каждую минуту один из кузнечиков прыгает вдоль окружности через своего соседа так, чтобы расстояние между ними не изменилось. При этом нельзя пролетать над другими кузнечиками и попадать в точку, где уже сидит кузнечик. Через некоторое время оказалось, что какие-то 9 кузнечиков сидят в точках A1, A2, ..., A9, а десятый сидит на дуге A9A10A1. Можно ли утверждать, что он сидит именно в точке A10?

Прислать комментарий     Решение

Задача 65248

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Центральная симметрия помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Четыре точки, лежащие на одной окружности ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Дидин М.

В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что  QMAC  и  PMAB.  Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что  BH = CX.

Прислать комментарий     Решение

Задача 65737

Темы:   [ Процессы и операции ]
[ Инварианты и полуинварианты (прочее) ]
[ Центральная симметрия помогает решить задачу ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4+
Классы: 9,10,11

а) Есть неограниченный набор карточек со словами "abc", "bca", "cab". Из них составляют слово по такому правилу. В качестве начального слова выбирается любая карточка, а далее на каждом шаге к имеющемуся слову можно либо приклеить карточку слева или справа, либо разрезать слово в любом месте (между буквами) и вклеить карточку туда. Можно ли так составить палиндром?

б) Есть неограниченный набор красных карточек со словами "abc", "bca", "cab" и синих карточек со словами "cba", "acb", "bac". Из них по тем же правилам составили палиндром. Верно ли, что было использовано одинаковое количество красных и синих карточек?

Прислать комментарий     Решение

Задача 110754

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Центральная симметрия помогает решить задачу ]
[ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 9,10

Даны две окружности, пересекающиеся в точках P и Q . C – произвольная точка одной из окружностей, отличная от P и Q ; A , B – вторые точки пересечения прямых CP , CQ с другой окружностью. Найдите геометрическое место центров окружностей, описанных около треугольников ABC .
Прислать комментарий     Решение


Задача 98374

Темы:   [ Замощения костями домино и плитками ]
[ Правильные многоугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Малые шевеления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 10,11

а) На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму правильного шестиугольника, причём у всех салфеток одна сторона параллельна одной и той же прямой. Всегда ли можно вбить в стол несколько гвоздей так, что все салфетки будут прибиты, причём каждая – только одним гвоздём?
б) Тот же вопрос про правильные пятиугольники.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .