ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 109]      



Задача 111909

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Произвольные многоугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 7,8,9,10,11

Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.)

Прислать комментарий     Решение

Задача 116904

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10

Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65045

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Примеры и контрпримеры. Конструкции ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 4+
Классы: 9,10,11

Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны?

Прислать комментарий     Решение

Задача 65939

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
[ Центральная симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

  На плоскости даны три прямые l1, l2, l3, образующие треугольник, и отмечена точка O – центр описанной окружности этого треугольника. Для произвольной точки X плоскости обозначим через Xi точку, симметричную точке X относительно прямой li,  i = 1, 2, 3.
  а) Докажите, что для произвольной точки M прямые, соединяющие середины отрезков O1O2 и M1M2, O2O3 и M2M3, O3O1 и M3M1, пересекаются в одной точке.
  б) Где может лежать эта точка пересечения?

Прислать комментарий     Решение

Задача 111879

Темы:   [ Ортоцентр и ортотреугольник ]
[ Удвоение медианы ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Центральная симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4+
Классы: 9,10

В неравнобедренном треугольнике ABC точки H и M – точки пересечения высот и медиан соответственно. Через вершины A, B и C проведены прямые, перпендикулярные прямым AM, BM, CM соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой MH.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .