ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что  PQ = AC/2.  Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный.

   Решение

Задачи

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 603]      



Задача 111803

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9,10

На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что  MC = AC  и  NB = AB.  Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.

Прислать комментарий     Решение

Задача 64774

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 9,10,11

Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что  PQ = AC/2.  Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный.

Прислать комментарий     Решение

Задача 65034

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-

Окружность, вписанная в прямоугольный треугольник ABC  (∠B = 90°),  касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. A2, C2 – точки, симметричные точке B1 относительно прямых BC, AB соответственно. Докажите, что прямые A1A2, C1C2 пересекаются на медиане треугольника ABC.

Прислать комментарий     Решение

Задача 98593

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Внутри треугольника ABC взята точка P так, что  ∠ABP = ∠ACP,  а  ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.

Прислать комментарий     Решение

Задача 111627

Темы:   [ Биссектриса делит дугу пополам ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность, M – точка пересечения его диагоналей, O1 и O2 – центры вписанных окружностей треугольников ABM и CMD соответственно, K – середина дуги AD, не содержащей точек B и C,  ∠O1KO2 = 60°,  KO1 = 10.  Найдите O1O2.

Прислать комментарий     Решение

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .