ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Тыщук К.

Исходно на доске написаны многочлены  x³ – 3x² + 5  и  x² – 4x.  Если на доске уже написаны многочлены  f(x) и g(x), разрешается дописать на неё многочлены  f(x) ± g(x),  f(x)g(x),  f(g(x))  и  cf(x),  где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида  xn – 1  (при натуральном n)?

   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 965]      



Задача 64668

Темы:   [ Многочлены (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4-
Классы: 10,11

Существует ли такой многочлен  f(x) степени 6, что для любого x выполнено равенство  f(sinx) + f(cosx) = 1?

Прислать комментарий     Решение

Задача 64762

Темы:   [ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Серёжа выбрал два различных натуральных числа a и b. Он записал в тетрадь четыре числа:  a,  a + 2,  b и  b + 2.  Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?

Прислать комментарий     Решение

Задача 64783

Темы:   [ Многочлены (прочее) ]
[ Процессы и операции ]
[ Вычисление производной ]
Сложность: 4-
Классы: 10,11

Автор: Тыщук К.

Исходно на доске написаны многочлены  x³ – 3x² + 5  и  x² – 4x.  Если на доске уже написаны многочлены  f(x) и g(x), разрешается дописать на неё многочлены  f(x) ± g(x),  f(x)g(x),  f(g(x))  и  cf(x),  где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида  xn – 1  (при натуральном n)?

Прислать комментарий     Решение

Задача 65483

Тема:   [ Тождественные преобразования ]
Сложность: 4-
Классы: 10,11

Алгебраисты придумали новую операцию ❆, которая удовлетворяет условиям:  аа = 0  и  а ❆ (bc) = (ab) + c.  Вычислите  2015 ❆ 2014.  (Знак "+" определяет сложение в обычном смысле, скобки показывают порядок действий.)

Прислать комментарий     Решение

Задача 65679

Темы:   [ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Уравнение с целыми коэффициентами  x4 + ax³ + bx² + cx + d = 0  имеет четыре положительных корня с учетом кратности.
Найдите наименьшее возможное значение коэффициента b при этих условиях.

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .